If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=7x^2-567
We move all terms to the left:
0-(7x^2-567)=0
We add all the numbers together, and all the variables
-(7x^2-567)=0
We get rid of parentheses
-7x^2+567=0
a = -7; b = 0; c = +567;
Δ = b2-4ac
Δ = 02-4·(-7)·567
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126}{2*-7}=\frac{-126}{-14} =+9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126}{2*-7}=\frac{126}{-14} =-9 $
| 3-(-8/x)=12 | | 6p^2-13p+6=0 | | 10x+10=2x+11 | | x=6x+5+11x-5 | | -8(x-44)x=7 | | (53)=7(3)+b | | -7(6-2x)=42 | | 4(4w+9)÷5=0 | | X+2x-18+90=180 | | 5/6+r=4+3/5 | | 6.8=f/9 | | 2x+4+1x=16 | | d-1/d=2+d/1+d | | -5x+13x=-64 | | 3x/10+79=x | | (3x-5)(2x-25)=180 | | -2.7h=29.7 | | y=250(1+.03) | | 6x-4+24=360 | | x^2–16x=–15 | | (3x+3)+(2x+1)+6x=180 | | (x+30)+(3x+7)=180 | | 2x+8-1x=-7 | | 2x–46=3x-80 | | 1+6p=7 | | 2c–46=3c-80 | | 0.3x-1.6=2.3 | | -d/5-1=6-6 | | 5u+47=9u+31 | | 25m^2+16=0 | | 9=9+4/x-11 | | -2.6n=20.8 |